Aug 28, 2015

Student Puzzle Corner 11: deadline October 20, 2015

Infinite divisibility of Euclidean random variables and vectors has been a core theme in the theory of probability for at least sixty years. The question asked is when can a random variable be decomposed into small independent components. Precisely, a random variable (vector) $X$ is called infinitely divisible if for each $n \geq 1$, $X$ is equal in law to a sum of $n$ iid variables $X_{n1}, \cdots , X_{nn}$, with some common distribution $F_n$. So, obviously any Gaussian or any Poisson or any Gamma or any Cauchy random variable is infinitely divisible. An attractive characterization of infinitely divisible distributions is that the set of all possible weak limits of triangular array partial sums $S_n = X_{n1} + \cdots + X_{nn}$, where $X_{n1}, \cdots , X_{nn}$ are iid with some common distribution $F_n$, coincides with the set of all infinitely divisible distributions. For example, if $F_n$ is a Bernoulli distribution with parameter $\frac{\lambda }{n}$, then the partial sums $S_n$ converge in distribution to a Poisson with mean $\lambda $. So all Poissons arise as weak limits of triangular array partial sums, and hence must be infinitely divisible.

What is not infinitely divisible? Although many special examples are known, what can one say generally? Random variables with a bounded support cannot be infinitely divisible; random variables whose characteristic function $\psi (t)$ ever takes the value zero cannot be infinitely divisible. Thus, Betas cannot be infinitely divisible; interestingly, logarithms of Betas are. On the other hand, although all Gaussians, and in particular the standard normal, are infinitely divisible, fold the standard normal to $(0,\infty )$, and that’s not infinitely divisible. Any non-normal distribution with a normal tail cannot be infinitely divisible. Normal stands at the edge of infinite divisibility in thinness of the tail.

The concept of infinite divisibility has long been extended to non-Euclidean random variables, for example, to groups with some structures, and to random sets. Primary authoritative references include work of Bondesson, Ibragimov, Steutel, Zolotarev, and the all-time classic book of Feller. Infinite divisibility is an enigma; something may be infinitely divisible, and something very, very similar may fail to be so.

Here is the exact problem of this issue:
Fix $\epsilon > 0$. Give an example of two real valued random variables $X, Y$, respectively with densities $f(x), g(x)$, such that $f(x), g(x) > 0$ for all real $x$, $|g(x) – f(x)| \leq \epsilon $ for all real $x$, and $X$ is infinitely divisible, yet $Y$ is not.

Got it? Submit your solution to bulletin@imstat.org, with the subject “Student Puzzle Corner”. Show your workings!

Share

1 Comment

Leave a comment to Student Puzzle 11: still time to enter « IMS Bulletin

*

Share

Welcome!

Welcome to the IMS Bulletin website! We are developing the way we communicate news and information more effectively with members. The print Bulletin is still with us (free with IMS membership), and still available as a PDF to download, but in addition, we are placing some of the news, columns and articles on this blog site, which will allow you the opportunity to interact more. We are always keen to hear from IMS members, and encourage you to write articles and reports that other IMS members would find interesting. Contact the IMS Bulletin at bulletin@imstat.org

What is “Open Forum”?

In the Open Forum, any IMS member can propose a topic for discussion. Email your subject and an opening paragraph (to bulletin@imstat.org) and we'll post it to start off the discussion. Other readers can join in the debate by commenting on the post. Search other Open Forum posts by using the Open Forum category link below. Start a discussion today!

About IMS

The Institute of Mathematical Statistics is an international scholarly society devoted to the development and dissemination of the theory and applications of statistics and probability. We have about 4,500 members around the world. Visit IMS at http://imstat.org
Latest Issue