Nov 16, 2015

# Solution to Student Puzzle Corner 11

Bulletin Editor Anirban DasGupta writes the solution to the previous puzzle.

Fix $\epsilon > 0$. Give examples of two absolutely continuous distributions with densities $f$ and $g$ such that $|f(x)-g(x)| \leq \epsilon$ for all $x$, and one of the two distributions is infinitely divisible but the other is not. Such an example can be constructed using numerous different sufficient conditions for noninfinite divisibility. One can use the no zero property of the characteristic function, or property about tails, and if we don’t mind it if one has a bounded support, then by also using the bounded support condition. For example, given $\epsilon > 0$, take $f$ to be the density of the $N(0, \frac{2}{\pi \,\epsilon ^2})$ distribution, and $g$ to be the density of the uniform distribution on $[-\,\frac{1}{\epsilon }, \frac{1}{\epsilon }]$.

Then, $\sup _{x \in \mathcal{R}}\,|f(x)-g(x)| \leq \epsilon$, and the $N(0, \frac{2}{\pi \,\epsilon ^2})$ distribution is infinitely divisible, while the uniform distribution on $[-\,\frac{1}{\epsilon }, \frac{1} {\epsilon }]$ is not, because it has a bounded support. Examples can be constructed easily even if both $f, g$ are supported on the whole real line: just perturb a standard normal density slightly.

## Welcome!

Welcome to the IMS Bulletin website! We are developing the way we communicate news and information more effectively with members. The print Bulletin is still with us (free with IMS membership), and still available as a PDF to download, but in addition, we are placing some of the news, columns and articles on this blog site, which will allow you the opportunity to interact more. We are always keen to hear from IMS members, and encourage you to write articles and reports that other IMS members would find interesting. Contact the IMS Bulletin at bulletin@imstat.org

## What is “Open Forum”?

In the Open Forum, any IMS member can propose a topic for discussion. Email your subject and an opening paragraph (to bulletin@imstat.org) and we'll post it to start off the discussion. Other readers can join in the debate by commenting on the post. Search other Open Forum posts by using the Open Forum category link below. Start a discussion today!